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Key concepts

• General Bayesian mixture model
• We derive the Gibbs sampler
• Marginalize out mixing proportions: collapsed Gibbs sampler
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Bayesian document mixture model

• Our mixture model has observations wd the words in document
d = 1, . . . , D. The parameters are βk and θ, and latent variables z.

• The mixture model has K components, so the parameters are
βk, k = 1, . . .K. Each βk is the parameter of a categorical over possible
words, with prior p(β). The discrete latent variables zd, d = 1, . . . D take
on values 1, . . .K.

• Note, that in this model the observations are (the word counts of) entire
documents.

wnd

n = 1...Nd

βk

d = 1...D

zdθ

k = 1...K

α !
θ ∼ Dir(α)

βk ∼ Dir(γ)

zd|θ ∼ Cat(θ)

wnd|zd,β ∼ Cat(βzd
)
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Bayesian mixture model
The conditional likelihood is for each observation is

p(wd|zd = k,β) = p(wd|βk) = p(wd|βzd),

and the prior
p(βk|γ) = Dir(γ)

The categorical latent component assignment probability

p(zd = k|θ) = θk,

with a Dirichlet prior
p(θ|α) = Dir(α).

Therefore, the latent conditional posterior is

p(zd = k|wd,θ,β) ∝ p(zd = k|θ)p(wd|zd = k,β) ∝ θkp(wd|βzd),

which is just a discrete distribution with K possible outcomes.
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Gibbs Sampling
The Goal: Sample from the Joint Posterior of all variables:

p(z,θ,β|w)

To achieve this, we iteratively sample from the conditionals:

1. Component parameters (Dirichlet)

p(βk|w, z) ∝ p(βk)
∏

d:zd=k

p(wd|βk),

which is now a categorical model, the mixture aspect having been eliminated.
2. Latent assignments (Categorical)

p(zd = k|wd,θ,β) ∝ θkp(wd|βzd),

3. Mixing proportions (Dirichlet)

p(θ|z, α) ∝ p(θ|α)p(z|θ) ∝ Dir(c+ α).

where ck =
∑

d:zd=k 1 are the counts for mixture k.
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Collapsed Gibbs Sampler
The parameters are treated in the same way as before.

If we marginalize over θ

p(zd = k|z−d, α) =

∫
p(zd = k|θ)p(θ|z−d, α)dθ

=

∫
θkp(θ|z−d, α)dθ =

α+ c−d,k∑K
j=1 α+ c−d,j

,

where index −d means all except d, and ck are counts;
we derived this result when discussing pseudo counts.
The collapsed Gibbs sampler for the latent assignements

p(zd = k|wd, z−d,β, α) ∝ p(wd|βk)
α+ c−d,k∑K
j=1 α+ c−d,j

,

where now all the zd variables have become dependent (previously they were
conditionally independent given θ).
Notice, that the Gibbs sampler exhibits the rich get richer property.
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Per word Perplexity
In text modeling, performance is often given in terms of per word perplexity.
The perplexity for a document is given by

exp(−ℓ/n),

where ℓ is the log joint probability over the words in the document, and n is
the number of words. Note, that the average is done in the log space.

A perplexity of g corresponds to the uncertainty associated with a die with g
sides, which generates each new word.

Example:

p(w1, w2, w3, w4) =
1

6

1

6

1

6

1

6
(1)

1

n
log p(w1, . . . , w4) =

1

4
log(

1

6
)4 = − log 6 (2)

perplexity = exp(− 1

n
log p(w1, . . . , w4)) = 6 (3)
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