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Key concepts

® General Bayesian mixture model
® We derive the Gibbs sampler

® Marginalize out mixing proportions: collapsed Gibbs sampler
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Bayesian document mixture model

® QOur mixture model has observations w, the words in document

d=1,...,D. The parameters are 3, and 6, and latent variables z.
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Bayesian document mixture model

® QOur mixture model has observations w, the words in document
d=1,...,D. The parameters are 3, and 6, and latent variables z.

® The mixture model has K components, so the parameters are
Bi,k=1,... K. Each 3, is the parameter of a categorical over possible
words, with prior p(3). The discrete latent variables z4,d = 1,... D take
on values 1,... K.
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Bayesian document mixture model

® QOur mixture model has observations w, the words in document
d=1,...,D. The parameters are 3, and 6, and latent variables z.

® The mixture model has K components, so the parameters are
Bi,k=1,... K. Each 3, is the parameter of a categorical over possible
words, with prior p(3). The discrete latent variables z4,d = 1,... D take
on values 1,... K.

® Note, that in this model the observations are (the word counts of) entire
documents.
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Bayesian mixture model
The conditional likelihood is for each observation is

p(Walza =k, 8) = p(walBk) = p(walB:,),

and the prior
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Bayesian mixture model
The conditional likelihood is for each observation is

p(Walza =k, 8) = p(walBk) = p(walB:,),

and the prior

with a Dirichlet prior
p(0la) = Dir(a).

Therefore, the latent conditional posterior is

p(za = k|wa,0,8) X p(zq = k|0)p(Walza = k,B) o< Orp(wa|Bz,),

which is just a discrete distribution with K possible outcomes.
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Gibbs Sampling
The Goal: Sample from the Joint Posterior of all variables:

p(z,6, 8|w)

To achieve this, we iteratively sample from the conditionals:

Ayush Tewari Gibbs Sampling for Bayesian Mixture December 1st, 2025

5/7



Gibbs Sampling
The Goal: Sample from the Joint Posterior of all variables:

p(z,0,8|w)
To achieve this, we iteratively sample from the conditionals:

1. Component parameters (Dirichlet)

p(Belw,z) o< p(B) [] p(walBr),

d:zd:k

which is now a categorical model, the mixture aspect having been eliminated.
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Gibbs Sampling

The Goal: Sample from the Joint Posterior of all variables:

p(z,0,8|w)
To achieve this, we iteratively sample from the conditionals:

1. Component parameters (Dirichlet)

p(Belw,z) o< p(B) [] p(walBr),

d:zd:k
which is now a categorical model, the mixture aspect having been eliminated.

2. Latent assignments (Categorical)

p(Zd = k|wd70718) X ek:p(wdlﬂzd)7
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Gibbs Sampling
The Goal: Sample from the Joint Posterior of all variables:
p(z, 0, Blw)

To achieve this, we iteratively sample from the conditionals:

1. Component parameters (Dirichlet)

p(Belw,z) o< p(B) [] p(walBr),

d:zd:k

which is now a categorical model, the mixture aspect having been eliminated.

2. Latent assignments (Categorical)

p(Zd = k|wd70718) X ek:p(wdlﬂzd)7

3. Mixing proportions (Dirichlet)
p(0]z,a) < p(0la)p(z|d) x Dir(c+ «).

where ¢, = ;.. _, 1 are the counts for mixture k.

Ayush Tewari Gibbs Sampling for Bayesian Mixture December 1st, 2025

5/7



Collapsed Gibbs Sampler

The parameters are treated in the same way as before.
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Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over 6

p(za = Hz_g,0) = / p(za = HO)p(Olz_a, a)do
a+Cc_qk
Zf:1 Q-+ Cod,j ,

= /Hkp(9|z_d,a)d9 =

where index —d means all except d, and c¢j are counts;
we derived this result when discussing pseudo counts.
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Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over 6

p(za = Hz_g,0) = / p(za = HO)p(Olz_a, a)do
a+Cc_qk
Zf:1 Q-+ Cod,j ,

= /Hkp(9|z_d,a)d9 =

where index —d means all except d, and c¢j are counts;
we derived this result when discussing pseudo counts.

The collapsed Gibbs sampler for the latent assignements

a+Cc_gk
p(za = klwa, 2_q4,8,a) < p(Wa|Br) —g—,
Zj:l a+cCd,j

where now all the z4 variables have become dependent (previously they were
conditionally independent given ).
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Collapsed Gibbs Sampler

The parameters are treated in the same way as before.

If we marginalize over 6

p(za = Hz_g,0) = / p(za = HO)p(Olz_a, a)do
a+Cc_qk
Zf:1 Q-+ Cod,j ,

= /Hkp(9|z_d,a)d9 =

where index —d means all except d, and c¢j are counts;
we derived this result when discussing pseudo counts.

The collapsed Gibbs sampler for the latent assignements

a+Cc_gk
p(za = klwa, 2_q4,8,a) < p(Wa|Br) —g—,
Zj:l a+cCd,j

where now all the z4 variables have become dependent (previously they were
conditionally independent given ).

Notice, that the Gibbs sampler exhibits the rich get richer property.
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Per word Perplexity

In text modeling, performance is often given in terms of per word perplexity.
The perplexity for a document is given by

exp(—é/n),

where /¢ is the log joint probability over the words in the document, and n is
the number of words. Note, that the average is done in the log space.
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Per word Perplexity

In text modeling, performance is often given in terms of per word perplexity.
The perplexity for a document is given by

exp(—é/n),

where /¢ is the log joint probability over the words in the document, and n is
the number of words. Note, that the average is done in the log space.

A perplexity of g corresponds to the uncertainty associated with a die with ¢
sides, which generates each new word.
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Per word Perplexity

In text modeling, performance is often given in terms of per word perplexity.
The perplexity for a document is given by

exp(—é/n),

where /¢ is the log joint probability over the words in the document, and n is
the number of words. Note, that the average is done in the log space.

A perplexity of g corresponds to the uncertainty associated with a die with ¢
sides, which generates each new word.

Example:

1111
— -2 1
p(wy, w2, w3, ws) 6666 (1)
l10 (w w)—llo (1)4——10 6 (2)

ngp 17~~'»4—4g6— g

1

perplexity:exp(—ﬁlogp(wl,...,wzl)) =6 (3)
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